本套PPT模板在内容上分为导入新课、探究实验、拓展延伸、课堂总结共计四个部分;第一部分首先通过一则谜底为船的谜语引入课堂内容,激发学生的学习兴趣,并阐明了本节课的教学内容为“造一艘小船”;第二部分则介绍了开展探究实验要准备的材料和步骤,采用橡皮泥为材料制作小船,探究船浮在水面到原因;第三部分介绍了船的发展过程,从木筏到现代客轮、航空母舰的历程;第四部分总结了课堂,并布置了习题;
PowerPoint从两个部分来展开介绍关于高一化学人教必修第一册第四章物质结构——元素周期律的单元复习课件的相关内容。PPT模板的第一个部分对单元知识网络进行了构建,运用幻灯片展示了原子结构与元素周期表、元素周期表、元素周期律、化学键这四个单元知识网络。第二个部分带领学生突破了重、难点知识,通过演示文稿展示了本单元的难点知识,包括原子结构、核素、元素周期表与元素性质等内容,并且以练习的形式帮助学生从练中学,达到复习巩固的效果。
本套演示文稿以“求一个数是另一个数的几分之几”为主题,共包含29张幻灯片,旨在通过系统的教学设计帮助学生深入理解这一数学概念,并掌握其应用方法。在本节课中,教师通过多种教学策略,引导学生逐步掌握核心知识,提升数学思维能力。首先,教师通过复习的方式帮助学生回顾分数与除法之间的关系。这一环节不仅巩固了学生已有的知识基础,还为新课的学习做好了铺垫。随后,教师通过创设真实情境,引导学生在具体问题中分析和思考,自主总结本堂课的知识内容。这种情境化的教学方式能够让学生在实际问题中感受数学的应用价值,同时也使他们对知识的理解更加深入。在教学过程中,教师注重对学生思维的引导,鼓励学生自主探究部分量与总量之间的关系,并通过具体实例帮助学生理解整数倍和分数倍的概念。同时,教师会及时纠正学生在学习过程中出现的错误,并给予针对性的指导,帮助学生提高解决问题的能力。演示文稿分为五个部分。第一部分为“学习目标”,明确本节课的三大学习目标:理解部分量与总量之间的关系,掌握求一个数是另一个数的几分之几的方法,以及培养学生的数学思维和逻辑推理能力。第二部分是“学习重难点”,首先介绍学习重点,即理解部分量与总量之间的关系,并掌握求几分之几的方法;其次明确学习难点,主要是帮助学生理解分数倍的概念,并能够在实际问题中灵活运用;最后对核心素养进行简要说明,强调通过本节课的学习,学生将提升数学思维能力和问题解决能力。第三部分为“课前导入”,通过具体问题引入部分量与总量之间的关系。例如,通过生活中的实例(如分配物品、测量长度等),引导学生思考如何用分数表示部分量与总量的关系,从而自然地引入新课内容。第四部分是“学习任务”,围绕整数倍和分数倍的理解与运用展开。教师通过具体实例,帮助学生理解整数倍和分数倍的区别与联系,并通过练习题引导学生掌握如何用分数表示一个数是另一个数的几分之几。这一环节注重学生的自主探究和合作学习,通过小组讨论和交流,帮助学生深化对知识的理解。第五部分为“达标练习与知识总结”,通过设计多样化的练习题,帮助学生巩固所学知识。练习题包括选择题、填空题和应用题,旨在检验学生对知识的掌握程度,并提升他们的解题能力。最后,通过知识总结,帮助学生回顾本节课的重点内容,梳理知识体系,进一步加深对知识的理解。通过本节课的学习,学生不仅能够掌握求一个数是另一个数的几分之几的方法,还能在具体情境中理解分数的意义和应用价值。这种以学生为中心的教学设计,能够有效激发学生的学习兴趣,培养他们的自主学习能力和数学思维能力,为后续的数学学习奠定坚实的基础。
这份二十四页的演示文稿,紧扣北师大版八年级上册第四章《4.2 认识一次函数》第1课时,以“均匀变化”这一生活触感为支点,帮助学生完成从“感觉线性”到“符号一次函数”的抽象跨越。课堂流程简洁而递进:情境导入—新知探究—典例巩固—课堂小结。 开篇“情境导入”抛出贴近学生日常的手机流量案例:套餐内每月赠送1 GB,超出后按每200 MB固定资费累加,账单随使用量增加而阶梯式上升。学生边观看账单动画边记录“超用量”与“应缴费用”对应表,教师追问“每多200 MB,钱多几元?变化量固定吗?”生活实例瞬间聚焦“均匀递增”现象,激发用数学语言描述规律的需求。 “新知探究”分三步走:先让学生用表格记录流量与费用数据,计算相邻两组“差值”发现恒为固定常数;再引导用式子表示,设超出量为x,总费用y=kx+b,突出“变化量相同→k恒定”的核心特征;最后动态演示x每增加1个单位,y就增加k个单位,用GeoGebra画出对应直线,学生直观感受“均匀变化=直线上升或下降”,一次函数概念水到渠成。 “典例巩固”采用“一景多问”:同一背景“匀速骑车”分别给出表格、解析式、图像三种信息,学生抢答变化率、预测未来位置并判断趋势;平板实时呈现正确率,教师针对最低得分点即时二次讲解。随后推送两道中考真题切片,要求学生判断变化是否均匀、写出关系式并预测结果,实现“所学即所考”的无缝对接。 结课用“思维导图快闪”:均匀变化→差值恒定→一次函数→直线图像四节点依次展开,学生用电子笔补充易错提示,生成班级共性记忆图;作业分两层:A层教材习题夯实基础,B层观察家庭用电表或水表,记录读数变化并写出一次函数模型,把课堂发现带回日常。整套课件以少量幻灯片承载大容量思维,通过“生活触感—数据归纳—符号抽象—图像验证”的闭环设计,不仅让学生真正理解“均匀变化就是一次函数”,更在“列表—写式—画图—预测”的实战中,为后续学习斜率、截距及实际应用奠定坚实的概念与技能双重根基。
这份共十六张的PPT课件,专为北师大版八年级上册第四章《4.2 认识一次函数》第2课时“一次函数与正比例函数”量身打造,以“从特殊到一般、从感知到符号”为脉络,帮助学生在短短一节课内完成“认识正比例—提炼一次—写出解析式”的三级跳。课堂流程简洁而递进:温故复习—情境导入—新知探究—典例巩固—课堂小结。 开篇“温故复习”用30秒快闪:函数定义、三种表示法(解析式、表格、图像)依次闪过,学生抢答关键词“唯一对应”,教师随即板书,为后续“一次函数也是函数”奠定逻辑起点。 “情境导入”贴近学生日常:手机导航显示“匀速行驶,每公里油耗0.08升”,屏幕动态呈现里程表与油量表同步下降,学生记录“行驶里程x”与“剩余油量y”对应数据,发现每增加1公里,油量减少0.08升,变化量恒定,教师顺势点拨“当x=0时,y=油箱容量”,引出y=kx+b(k≠0)的一般形式,并强调“b可不为0”即一次函数,“b=0”则退化为正比例函数,特殊与一般的关系一目了然。 “新知探究”借助课本例题“弹簧伸长量与所挂砝码质量”展开:学生分组测量数据,计算“每多50克,伸长0.5厘米”的固定变化率,填写表格并描点连线,GeoGebra同步生成直线,直观感受“斜率k即变化率、截距b即原长”,随后归纳求解析式三步法:找变化率→定k→代入任一点求b。 “典例巩固”采用“一题多变”:同一背景“共享单车押金与骑行费用”分别给出表格、图像、文字三种信息,学生抢列解析式并预测骑行10公里的费用,平板实时呈现正确率,教师针对最低得分点即时二次讲解;随后推送两道中考真题切片,要求学生判断函数类型并写出关系式,实现“所学即所考”的无缝对接。 结课用“思维导图快闪”:正比例函数→一次函数→斜率k→截距b四节点依次展开,学生用电子笔补充易错提示,生成班级共性记忆图;作业分两层:A层教材习题夯实基础,B层观察家庭用水量与水费关系,记录数据并写出一次函数模型,把课堂发现带回日常。整套课件以少量幻灯片承载大容量思维,通过“生活触感—数据归纳—符号抽象—图像验证”的闭环设计,不仅让学生真正理解“正比例函数是一次函数的特殊情况”,更在“列表—写式—画图—预测”的实战中,为后续学习函数图像性质、实际应用及模型思想奠定坚实的概念与技能双重根基。
这套由二十二张幻灯片构成的教学课件,紧扣北师大版八年级上册第四章《一次函数的应用》第二课时,以“把方程看成函数的零点”为切入口,帮助学生打通一次函数与一元一次方程之间的任督二脉,学会用图像、解析式双视角解决实际问题。课堂依旧五环递进:巩固复习—情境导入—新知探究—典例变式—课堂小结。“巩固复习”用快闪方式唤醒记忆:一次函数y=kx+b的斜率k定方向、截距b定位置,图像是一条直线,学生边口述边用手势比斜率,教师顺势追问:“直线与x轴的交点有什么特殊含义?”为后续“函数零点=方程解”埋下伏笔。“情境导入”给出“共享单车计费”折线图:前2公里计费平台平直,之后直线上升,教师指着与x轴交点问:“此时收费为0,对应路程是多少?”学生目测回答后,教师揭示“这就是方程kx+b=0的解”,生活情境瞬间对接数学本质,引出本课核心——一次函数图像与一元一次方程的关系。“新知探究”分三步走:①观察图像——用GeoGebra动态演示直线y=2x-4与x轴交于(2,0),学生眼见交点横坐标即方程2x-4=0的解;②代数验证——把交点x=2代入方程左右相等,强化“图像交点⇔方程根”的一一对应;③一般归纳——给出y=kx+b,引导得出“令y=0,解得x=-b/k”即为函数零点,也是方程根,数形结合思想水到渠成。“典例变式”采用“一景三问”:给出“出租车计费”解析式y=1.5x+7(x>3),先求收费为22元时的里程,再求收费为0时的理论里程(函数零点),最后讨论“零点在实际场景中有意义吗?”让学生体会数学解与实际解的差异;随后推送中考真题,要求用图像法与代数法并列求“水费结算”临界点,平板实时统计正确率,教师针对红区错误现场“开刀”,实现“情境→图像→方程→解释”的完整闭环。结课用“思维导图快闪”:令y=0→得方程→求x→交点坐标四步一气呵成,学生口头接龙补充易错点;作业分两层:A层完成教材配套“图像法解方程”练习,B层观察家用水费单,写出一次函数模型并求费用为0时的理论吨数,思考现实意义,把课堂所学搬回家。整套课件通过“动态交点—即时验证—情境回归”的闭环设计,不仅让学生真正掌握“函数零点即方程解”的核心思想,更在“看图→列式→求解→回代”的反复实践中,深刻体会数形结合的魅力,为后续学习一次函数与不等式、与方程组综合应用奠定坚实的模型与思维双重基础。
这份由二十三张幻灯片构成的教学课件,紧扣北师大版八年级上册第四章《一次函数的图像》第二课时,以“从特殊到一般”为线索,引导学生在正比例函数的基础上进一步探究一次函数y=kx+b的图像特征与性质,实现“会画图、能识图、会用图”的三重目标。课堂流程依旧五步递进:回顾旧知—情境导入—新知探究—典例巩固—课堂小结。开篇“回顾旧知”用动态直线快闪:正比例函数图像过原点,k决定上升或下降,学生边口述边用手势比斜率,教师顺势板书“列表—描点—连线”三步骤,为后续探究奠定方法基础。紧接着“情境导入”抛出共享单车计费场景:起步价1元含前2公里,之后每公里0.5元,学生列出解析式y=0.5x+1,发现“不再过原点”,自然产生“新图像长什么样”的疑问。“新知探究”分三步走:先在同一坐标系内分组画出y=2x、y=2x+3、y=2x-2,观察发现三条直线平行,b值让图像上下平移;再改变k值正负,对比y=2x+1与y=-2x+1,归纳k>0上升、k<0下降、b定交点(0,b)的性质口诀;最后用GeoGebra动态拖动k与b,实时预览直线旋转与平移,学生直观感受“斜率定方向,截距定位置”的数形对应。“典例巩固”采用“一题三问”:给出y=-3x+4,先列表描点验证直线,再求x=-1时的函数值,最后判断点(2,-2)是否在图像上,平板实时统计正确率,教师针对红区错误现场“开刀”;随后推送中考真题,要求根据图像写解析式并比较函数值大小,实现“所见即所考”。结课用“思维导图快闪”:k定方向、b定位置、两点定直线三节点依次展开,学生口头接龙补充易错点;作业分两层:A层完成教材配套画图与判断,B层测量家中水龙头放水时间与接水量,验证是否为一次函数并画图像,把课堂发现带回生活。整套课件通过“动态对比—即时观察—口诀归纳”的闭环,不仅让学生真正理解“解析式与图像一一对应”,更在“画一画、看一看、比一比”的亲历中,深刻体会数形结合思想,为后续学习一次函数应用、与方程不等式综合奠定坚实的图像与性质双重基础。
PPT模板内容主要通过PowerPoint软件分两个部分来向我们详细的展开介绍有关于传承孝道,弘扬文化新二十四孝教育培训课件的相关内容。PPT模板内容第一部分主要向我们详细的介绍了有关于新二十四孝与旧二十四孝的相关背景和相关简介。第二部分主要向我们详细的介绍了新二十四孝的具体内容,包括父母的日常起居以及他们的赡养问题等等内容。
这份PPT由四个部分组成。第一部分内容是二十四孝经典故事,此模板包括亲尝汤药、啮指痛、单衣顺母、百里负米、鹿乳奉亲、卖身葬父、行佣供母等经典故事。第二部分内容是故事思想内容分析,这一部分主要包括故事内容的分析、思想内容的分析。第三部分内容是“孝”与“孝道”的区别,这一部分一方面展示了《二十四孝》倡导的“孝”与孔学“孝道”的比较,另一方面是《孝经》中对天子以至庶人的行为规范要求。第四部分内容是关于“孝道”应该懂得什么,包括做人的行为规范、自己应承担的责任和享有的权利。
爱!是世界上最简单又最复杂的事情。七夕将至,用我们的相片制作一个精美的七夕相册,以此来纪念我们的爱情。
PowerPoint从四个部分来展开介绍关于敬老爱老,关心关爱空巢老人的相关内容。PPT模板的第一个部分介绍了什么是空巢老人,运用幻灯片讲解了空巢老人的概念界定以及我国当前的老年人口状况。第二个部分分析了空巢老人形成的原因。第三个部分通过演示文稿展示了空巢老人的生存现状,介绍了他们身心健康存在的问题。第四个部分分析了我们应该如何关爱空巢老人,讲起了要在物质层面、文化层面和社会层面让空巢老人得到保障。
本套PPT模板在内容上分为什么是“孝道”、百行孝为先、我们身边存在许多的威胁、我们身边的人仍不够自觉、孝亲敬老从我做起共计五个部分;第一、二部分首先阐明了孝道的含义,古人云“鸦有反哺之义,羊有跪乳之恩。”中国人讲究百善孝为先,并介绍了亲尝汤药、埋儿奉母等典故;第三、四部分介绍了我们周围的孝道故事和感人事迹;第五部分介绍了孝亲爱老,我们应该做什么;
“四讲四有”是作为一名合格党员的重要核心素养,也是中国共产党对新时代党员干部党性的客观要求,是中产党员爱护共产党、拥护共产党、振兴共产党、务实共产党的重要体现。“四讲四有”的内容是:讲政治有信念,讲规矩有纪律,讲道理有品行,讲奉献有作为。这是党中党在巩固人民群众路线教育实践活动和“三严三实”专题教育活动成果的基础上,对党员干部提出的新要求。四讲四有ppt课件,号召全体党员积极开展“学党章党规,学系列讲话,做合格党员”的专题学习教育。
这份由二十二张幻灯片构成的PPT课件,专为北师大版八年级上册第四章《4.2 认识一次函数》第3课时“一次函数在计费问题中的应用”量身定制。课程以“复习—探究—巩固—小结”四步递进,旨在让学生把“一次函数”从纸上的符号变成生活里的“计费神器”。开篇“知识回顾”用快闪方式唤醒记忆:教师抛出y=kx+b的解析式,学生口答k与b的现实意义,随后屏幕滚动呈现“斜率即单价、截距即起步价”的口诀,为后续应用奠定概念锚点。 进入“新知探究”,课件切换到课本例题“出租车计价”:起步价10元含3公里,之后每公里2元。学生分组填表记录里程x与车费y,发现3公里后“每多1公里,多2元”,变化率恒定,教师顺势引导列式y=2(x−3)+10,化简得y=2x+4,学生亲眼看到“一次函数=计费规则”的诞生过程。紧接着头脑风暴:水费阶梯、快递超重、共享充电宝计时……每组选取一个场景,现场测量数据并写出解析式,派代表登台讲解,台下同学用点赞贴纸投票“最会省钱方案”,课堂瞬间化身“计费创意市集”。 “基础巩固”分层推进:A层直接代入解析式求费用;B层给出预算反推可行驶最大里程,需解一元方程;C层引入“两段计价”真题,要求写出分段函数并画图像,平板实时生成正确率热力图,教师针对红区错误现场“开刀”。 结课用“电梯演讲”——30秒说清一次函数在计费里的作用,弹幕滚成词云;作业分两层:A层完成教材配套练习,B层记录家庭本月电费单,按“阶梯单价”写出一次函数模型并预测下月费用,把课堂所学搬回家。整套课件通过“生活场景—数据提炼—模型建构—即时反馈”的闭环设计,不仅让学生真正理解“一次函数就是单价数量+起步价”的计费本质,更在“算钱、省钱、比方案”的实战中,显著提升模型意识与应用能力,为后续学习分段函数、不等式及优化问题奠定坚实的方法与情感双重基础。
这份共十六张的PPT课件,紧扣北师大版八年级上册第四章《一次函数的应用》第一课时——“确定一次函数的表达式”,以“会看图、会设式、会求参”为核心目标,引导学生在图像与情境中还原解析式,深刻体验数形结合的魅力。课堂仍循五步展开:温故—情境—新知—典例—小结。“温故复习”用快闪方式唤醒记忆:正比例函数y=kx的图像必过原点,一次函数y=kx+b的斜率k定方向、截距b定位置,学生边口述边用手势比斜率,教师顺势板书“两点定一线”,为后续求参埋下伏笔。“情境导入”给出两条已画直线:y=2x+1与y=-x+3,让学生抢答“谁先画到y轴1?谁与x轴交于-3?”在温习图像特征的同时,教师追问:“如果反过来,已知直线经过(0,4)和(2,0),你能写出它的解析式吗?”问题一转,引出本课核心任务——由图或情境确定表达式。“新知探究”分两步走:先特殊后一般。①确定正比例函数:给出图像过点(3,6),学生口算k=2,写出y=2x,归纳“一个非原点即可定k”;②确定一次函数:给出图像与y轴交于-1,且过点(2,3),学生先写y=kx-1,再代入求k=2,归纳“两点或一点加截距可定k、b”。教师随即用GeoGebra动态演示:拖动两点,解析式实时变化,学生眼见“点动式动”,深刻感受坐标与参数的对应关系。“典例巩固”采用“一题三问”:给出一次函数图像与坐标轴两交点,先写解析式,再求x=-1时的函数值,最后判断点(m,m+2)是否在图像上,平板实时统计正确率,教师针对红区错误现场“开刀”;随后推送中考真题切片,给出实际情境“租车计费”,要求先设y=kx+b,再利用两组数据求参,实现“情境→图像→解析式”的完整闭环。结课用“思维导图快闪”:两点坐标→列方程组→解k、b→写解析式四步一气呵成,学生口头接龙补充易错点;作业分两层:A层完成教材配套“由图求式”练习,B层拍摄家中电表读数,记录两次时间与示数,写出一次函数模型并预测下次读数,把课堂所学搬回家。整套课件通过“动态演示—即时求参—情境回归”的闭环设计,不仅让学生真正掌握“两点定一线”的求法,更在“看图像→写解析式→回代检验”的反复实践中,深刻体会数形结合思想,为后续学习一次函数与方程、不等式综合应用奠定坚实的模型与思维双重基础。
这套由二十二张幻灯片构成的教学课件,紧扣北师大版八年级上册第四章《一次函数的应用》第三课时,聚焦“两个一次函数图像的交点”这一核心,引领学生从“看图说话”走向“借图解题”,体会交点背后的实际意义。课堂流程简洁而递进:情境导入—新知探究—典例变式—课堂小结。“情境导入”抛出学生熟悉的“租车比价”场景:A公司收固定起步费加每公里租金,B公司免起步费但单价略高。屏幕同时呈现两家公司的路程—费用折线图,教师提问:“什么时候两家价钱相同?哪段路程选哪家更划算?”生活化悬念瞬间点燃探究欲望,学生直观发现“两条线交叉”即为关键节点,自然引出本课核心——两个一次函数图像交点的实际含义。“新知探究”分三步走:①读图——用GeoGebra动态显示y=k₁x+b₁与y=k₂x+b₂的交点,学生眼见横坐标x₀使两函数值相等;②释义——教师引导得出“交点横坐标即两方案费用相等时的路程,纵坐标即此时的共同费用”,把抽象的‘解方程组’转化为可视的‘两线相遇’;③决策——拖动x轴上的动点,左侧y₁y₂、右侧y₁y₂,学生立刻体会“哪条线低就选哪家”的优化思想,实现“交点分界、左右比价”的建模思路。“典例变式”采用“一景三问”:给出“水费阶梯计价”双段折线图,先求交点坐标,再解释交点含义,最后设计用水量使费用最低,平板实时统计正确率,教师针对红区错误现场“开刀”;随后推送中考真题,要求用双图像法与代数法并列求“两车队运费相等”的临界点,实现“情境→图像→方程→决策”的完整闭环。结课用“思维导图快闪”:两直线→交点→横坐标相等→实际意义四步一气呵成,学生口头接龙补充易错点;作业分两层:A层完成教材配套“读交点”练习,B层观察家用水电费账单,绘制两段计价直线并求交点,说明如何用水用电最省钱,把课堂所学搬回家。整套课件通过“动态交点—即时释义—左右比价”的闭环设计,不仅让学生真正掌握“两线交点=方程组的解=现实决策临界点”的核心思想,更在“看图→找点→释义→择优”的反复实践中,深刻体会数形结合的魅力,为后续学习不等式组、线性规划奠定坚实的模型与思维双重基础。
520爱的表白PPT模板由麦克PPT网(apl.hqpazp.cn)提供下载,520谐音“我爱你”,5月20日又双叒叕可以撒一波狗粮,鲜花、巧克力神马的必不可少,此PPT适用于表白、求婚、把妹、泡妞等浪漫爱情,感谢生命中有你的陪伴!
520爱情PPT模板由麦克PPT网(apl.hqpazp.cn)提供下载,520见证浪漫爱情的时刻,宜表白、告白、求婚、把妹、撩妹、撩汉,520撒狗粮专用。
可爱宝贝PPT相册,采用小可爱的卡通风格,用PPT相册来记录可爱宝贝们的健康成长,可用于儿童成长相册。
最真诚的表白就是陪伴一生,爱你是我一生的事业,保护你是我一生的责任,爱情让我们走到了一起,剩下的时光,我会陪你慢慢变老。
PPT全称是PowerPoint,麦克素材网为你提供四爱一孝PPT模板免费下载资源。让你3分钟学会幻灯片怎么做的诀窍,打造高质量的专业演示文稿模版合集。